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Fast phase unwrapping algorithm for
interferometric applications
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A wide range of interferometric techniques recover phase information that is mathematically wrapped on the
interval �2p, p�. Obtaining the true unwrapped phase is a longstanding problem. We present an algorithm
that solves the phase unwrapping problem, using a combination of Fourier techniques. The execution time
for our algorithm is equivalent to the computation time required for performing eight fast Fourier transforms
and is stable against noise and residues present in the wrapped phase. We have extended the algorithm to
handle data of arbitrary size. We expect the state of the art of existing interferometric applications, including
the possibility for real-time phase recovery, to benefit from our algorithm. © 2003 Optical Society of America
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A host of techniques allow measurement of physical
properties based on the retrieval of phase information
encoded in an interference pattern. For example,
remote sensing techniques based on synthetic aper-
ture radar1 have a range of ecological and geophysi-
cal applications,2 –5 as well as military importance, for
instance, in target recognition.6 Magnetic resonance
imaging has great medical importance for mapping
internal structures of the human body.7 Further
examples arise from profilometric8 and interferomet-
ric9,10 techniques that measure mechanical properties
(e.g., strain or deformation) of materials. Of particu-
lar interest to the authors of this Letter is electron
holography,11 which, when realized in a transmission
electron microscope, allows measurement of the phase
shift (relative to vacuum) of the electron wave passing
through a sample. The recovered electron phase is
directly related to the electrostatic and magnetostatic
potential distribution in the sample.12

A major obstacle that frustrates all the above-
mentioned techniques is that the recovered phase
is mathematically limited to the interval �2p, p�
corresponding to the principal value of the arctangent
function. In general, the true phase may range
over an interval greater than 2p, in which case the
recovered phase contains artif icial discontinuities.
Unwrapping these discontinuities is a matter of adding
an appropriate integer multiple of 2p to each pixel
element of the wrapped phase map. In practice, how-
ever, the presence of noise and residues complicates
effective phase unwrapping, and there is a great
current interest in developing algorithms to overcome
these difficulties.13 – 26 In this Letter we present
a fast phase unwrapping algorithm that is largely
immune to the presence of noise and residues and does
not require strong user input. We present examples
culled from electron holography experiments with
structure in the wrapped phase (in terms of noise and
vortices) analogous to the structure found in phase
data recovered by other interferometric techniques.

We begin by considering the true (unwrapped)
phase, f�r�, in terms of the wrapped phase, fw �r�,
so that f�r� � fw�r� 1 2pn�r�, where r refers to
pixel position and n�r� is an integer. The goal of
our treatment will be to determine n�r�. It is com-
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mon with phase unwrapping algorithms to calculate
the difference of neighboring pixels in the wrapped
phase and, when it exceeds some threshold value, to
take this difference as a phase jump. Apart from
scaling, this amounts to taking the partial derivative
of the wrapped phase. We follow a similar route
by calculating the two-dimensional Laplacian of
f�r� � fw�r� 1 2pn�r� and solving for n�r�. Formu-
lating the problem in terms of the Laplace operator
offers a distinct advantage as we will show momentar-
ily. We obtain

n�r� �
1
2p

=�
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22 are the forward and inverse
two-dimensional Laplacian operators, respectively.
Equation (1) may be solved by use of fast Fourier
techniques for the Laplacian operators27 given by
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where �x, y� and �p, q� are real-space and
Fourier-space pixel coordinates, respectively, FFT�. . .�
denotes the fast Fourier transform operation, and
N is the input image size in pixels. It remains in
solving Eq. (1) to determine the Laplacian of the true
phase. One can do this28 by defining the complex
quantity P �r� � exp�ifw�r�� � exp�i�f�r� 2 2pn�r��� �
exp�if�r�� and recognizing that Im�1/P =�

2P � � =�
2f,

where Im�. . .� denotes the imaginary part. Hence,
=�

2f � cos fw=�
2�sin fw� 2 sin fw=�

2�cos fw�, and
we are able to calculate the Laplacian of the un-
wrapped phase with knowledge of only the wrapped
phase. The solution to Eq. (1) is unique once bound-
ary conditions are imposed along with the constraint
that n�r� must be an integer.

The constraint that n�r� are integers can be achieved
by rounding of the solution obtained from Eq. (1). Ap-
plying Fourier techniques to calculate the forward and
inverse Laplacians imposes periodic boundary condi-
tions on the solution obtained for n�r�, which, gen-
erally, is not realistic. Since n�r� are integers, it is
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more realistic that the gradient of n�r� normal to the
boundary vanishes. This boundary condition is eas-
ily implemented by use of the fast cosine transform
rather than the full Fourier transform suggested by
Eqs. (2) and (3). Since the fast cosine transform is
not always readily available, we present an equivalent
means based on symmetrization of the input wrapped
phase29 that allows us to solve Eq. (1) by use of the full
Fourier transform, at a cost of increased computation
and memory demands.

A synthesized image of dimensions 2N 3 2N is cre-
ated by mirror ref lection of the original N 3 N im-
age and is used as input to the unwrapping algorithm.
The mirrored image is an even function of the pixel co-
ordinates used in the FFT over the two-dimensional
plane. The 2N 3 2N solution of Eq. (1), therefore,
also contains this mirror symmetry, and the N 3 N so-
lution for n�r� is obtained by extraction of the original
quadrant of the 2N 3 2N solution. By construction
of an even function from the original phase image in
this manner, we rely on the properties of the FFT (ap-
propriate for the whole plane) to give the solution ap-
propriate for the boundary conditions that we wish to
impose, i.e., a vanishing normal gradient at the origi-
nal image boundary.

Although the solution obtained from Eq. (1) is, then,
unique, it may not completely unwrap the phase, since
the boundary conditions are only approximated, and
a rounding step is introduced. We may, however, use
the partially unwrapped phase as input to another it-
eration of the algorithm. With Eqs. (2) and (3) the it-
erative solution for the unwrapped phase is

fj11�x, y� � fj �x, y� 1 2p round
∑

f0�x, y� 2 fj�x, y�
2p

∏
,

(4)

where the index j refers to iteration step ( j � 0 is
the original wrapped phase), round�. . .� is the rounding
operator, and
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The expression for f0�x, y� arises from the term in
Eq. (1) involving the Laplacian of the true phase and
does not need to be calculated with each iteration. It
does, however, represent the vast majority of the com-
putational demands for the algorithm. We note also
that f0�x, y�, by construction, is an estimate of the un-
wrapped phase, and that the iterative steps in Eq. (4)
mean to converge as nearly to f0�x, y� as can be ac-
complished by addition of only integer multiples of 2p.
The estimate of the true phase by f0�x, y� is exact in
the limit that the true phase is second-order differen-
tiable (i.e., free from noise and residues) and that the
imposed boundary conditions are correct. Essentially,
what this means is that f0�x, y� needs only be a fair es-
timate of the unwrapped phase, i.e., within 6p. Since
the Fourier operators in Eq. (5) are nonlocal and in-
dependent of any unwrapping path, f0�x, y� is a good
enough estimate if the wrapped data are not abnor-
mally noisy, the density of phase residues is not too
high, and the gradient of the phase is not too steep at
the boundary. Although these statements are diffi-
cult to quantify precisely and are, furthermore, beyond
the scope of the Letter, in practice, our algorithm has
been found to be extremely robust with respect to noise
and vortices when it is applied to electron holography
data. We expect our algorithm to be similarly stable
when it is applied to wrapped phase data obtained by
other inteferometric techniques.

The account of phase unwrapping algorithms is
both long and active, and there are many different
algorithms that use many different approaches and
techniques, including elements also used by our
algorithm.30 Our approach, however, combines the
elements outlined above in a distinct manner. In
particular, we do not formulate the unwrapping
solution as a least-squares minimization problem
as is commonly done. This allows us to avoid any
assumption, implicitly or explicitly, about the noise
statistics of the wrapped data. (This is important
because the least-squares solution depends on as-
sumed statistics.31) The other key approach of our
algorithm is that Fourier transforms are used not only
to solve the differential equation but also to calculate
the derivatives, rather than calculating them by finite
differences. This allows us to avoid nearest-neighbor
operations that are sensitive to noise and vortices.
The result is an algorithm with a significantly higher
ratio of effectiveness per computational demands than
existing algorithms, and we believe that this is its
primary strength. We do not expect our algorithm to
supplant the most sophisticated algorithms. Rather,
we expect it to offer a balance between effectiveness
and simplicity that is unavailable at present and
that this combination may open possibilities that are
not currently feasible for a variety of inteferometric
techniques.

Figure 1a is an experimental wrapped phase from
electron holography experiments carried out on
Nd2Fe14B hard magnets, in which vortices in the
wrapped data are abundant. We show our unwrap-
ping results in Fig. 1b, which took eight iterations.
The image size was 204 3 184 pixels. For com-
parison, we show in Fig. 1c the unwrapping results
obtained by a simpler and faster, but path-dependent,
phase unwrapping algorithm. The path-dependent
method incorrectly unwraps the phase near the vor-
tices and propagates the error through the rest of
the unwrapped phase. Figure 2a is another example
of wrapped phase data (from electron holography
of Nd2Fe14B) that, along with Fig. 1a, were chosen
to emulate phase data with structure similar to,
for example, synthetic aperture radar or profilome-
ter techniques. Figure 2b is the unwrapped phase
corresponding to Fig. 2a after three iterations of our
algorithm. The image size in Fig. 2a is 204 3 184
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Fig. 1. Experimental wrapped phase (a) from holography
experiments carried out on Nd2Fe14B hard magnets. The
unwrapped phase obtained by (b) our algorithm and (c) a
path-dependent method.

Fig. 2. Wrapped phase (a) from holography experiments
carried out on Nd2Fe14B hard magnets. The unwrapped
phase (b) obtained by our algorithm (three iterations).

pixels. We note that, as presented, our algorithm
demands that the input image size be a power of 2,
since fast Fourier transforms are used. This require-
ment may be relaxed, as demonstrated by Figs. 1b
and 2b, if the region to be unwrapped is padded with
its boundary values to the nearest power of 2 in size.

One advantage of our phase unwrapping algorithm
is its simplicity to program and implement. This pro-
vides the opportunity for research to focus on more
important issues than the cumbersome task of unwrap-
ping phase data. It also allows existing interferomet-
ric techniques to be integrated more easily with other
techniques, for example, model calculation or simu-
lation. The algorithm is fast enough that real-time
application and in situ studies are feasible. Further-
more, there is no loss of measurement integrity, in
the sense that our algorithm adds only integer mul-
tiples of 2p to the wrapped data, and one does not
need to deal with artifacts associated with the un-
wrapping process. Our algorithm is reliable, which
should increase the performance of automated testing
and analysis, and aids in visualizing the phase, which
is invaluable for medical diagnostic applications. Al-
though additional work is needed to assess precisely
the quantitative limitations of our algorithm with re-
spect to noise, vortices, and boundary conditions, we
suppose that improvements or, perhaps more impor-
tantly, consistency checks may be devised to allow the
most sophisticated applications to benefit from it. For
example, one can imagine advances in adaptive optics
applications in which computational speed is crucial
or integration of this algorithm with high-performance
optical devices and applications of holographic infor-
mation storage and retrieval.32
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